ICML2014-Nearest-Neighbors and Large-Scale Learning

- Track F – Nearest-Neighbors and Large-Scale Learning (Location: 305-2, Chair: Kilian Weinberger)
[01]–10:50 Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search
Anshumali Shrivastava; Ping Li
主要是为降低LSH Query的查询复杂度,扫看全文第一感觉有点类似于WWW2007 GoogleSimHash的查询思路,暂未认真阅读。
使用的数据集:MNIST,NEWS20,WEBSPAM

[02]–11:10 Coding for Random Projections
Ping Li; Michael Mitzenmacher; Anshumali Shrivastava
有关随机映射编码精度提升的问题

[03]–11:30 Nearest Neighbors Using Compact Sparse Codes
Anoop Cherian

[04]–11:50 Composite Quantization for Approximate Nearest Neighbor Search
Ting Zhang; Chao Du; Jingdong Wang

[05]–12:10 Circulant Binary Embedding
Felix Yu; Sanjiv Kumar; Yunchao Gong; Shih-Fu Chang

可备读:A Divide-and-Conquer Solver for Kernel Support Vector Machines

 

Distributed Self-Taught Hashing  or  Distributed Hashing

 

发表评论

电子邮件地址不会被公开。 必填项已用 * 标注

*

您可以使用这些 HTML 标签和属性: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>